
9 Complex integral

Here we finally get to the central point of our course — complex integral. Specifically, our task is
make sense of the following notation ∫

γ
f(z)dz.

There are three parts of this formula: the integral itself, and what we actually understand by
writing the integral sign; the curve or path γ; and finally the domain E, which should contain γ and
on which f must be holomorphic (remember that the goal is to study holomorphic functions, not
arbitrary ones). There are quite a few subtle geometric and topological points related to γ,E, and f ,
but I will try to get to the final result (Cauchy’s theorem, see the next section) skipping most of these
technical points. Full treatment should be looked for in a graduate textbook.

9.1 Path

By a path γ in complex analysis one usually calls a rectifiable curve. Loosely speaking, this is a
continuous curve that has a finite length (but what is length anyway?). We will be satisfied with a
somewhat much less strict definition of the path: Path γ is a continuous piecewise smooth function.
This means that 1) γ : [α, β] −→ C is continuous, i.e.,

γ(t) = x(t) + iy(t),

and x and y are continuous real functions; moreover the derivative γ′(t) = x′(t) + iy′(t) exists at all
the points of [α, β] except, possible, a finite number of points t1, t2, . . . , tn, and if derivative exists then
it is a continuous function on its own.

Here are a few examples.
A path corresponding to the half circle through 1, i,−1 is given by γ(t) = eit, t ∈ [0, π].
A path corresponding to the line segment connecting points x0 + iy0 and x1 + iy1 is given by

γ(t) = (x0 + (x1 − x0)t) + i(y0 + (y1 − y0)t), t ∈ [0, 1], etc. More examples will be given below.
Quite often it is important to distinguish between the path itself (function t 7→ γ(t)) and its image

(the set of points {z ∈ C : z = γ(t), t ∈ [α, β]}), I will not do it in these lectures and will be using the
same letter γ for both the path and its image.

Note that the path has a direction, I will denote −γ the path that has the same image as γ but
the opposite direction.

The path is called closed if γ(α) = γ(β); simple if it has no self intersections (except for possibly
γ(α) = γ(β)); a simple closed path is often called a Jordan’s curve.

9.2 The integral

Now that we have some idea about paths I can define

Definition 9.1. ∫
γ
f(z)dz =

∫ β

α
f(γ(t))γ′(t)dt,
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where on the right is a pair of usual familiar real integrals∫ β

α
f(γ(t))γ′(t)dt =

∫ β

α
Re(f(γ(t))γ′(t))dt+ i

∫ β

α
Im(f(γ(t))γ′(t))dt.

Note that this definition of complex integral is perfectly fine even for the paths that are not differen-
tiable at every point, because the Riemann integral exists for piecewise continuous functions, and this
is what I required from γ′ to satisfy.

The definition may look a little arbitrary, and in this respect I would like to remark that
∫
γ f is

nothing else as two real line integrals, which were studied in Calc III, and which have quite natural
geometric and physical interpretations. Indeed, assuming f = u+ iv and z = x+ iy,∫

γ
f(z)dz =

∫ β

α
(u+ iv)(x′ + iy′)dt =

=

∫ β

α
(ux′ − vy′)dt+ i

∫ β

α
(vx′ + uy′)dt =

=

∫
γ
udx− vdy + i

∫
γ
vdx+ udy.

Here is our first (and arguably most important) example.

Example 9.2. Let γ = ∂B(0, 1), i.e., the boundary of the unit disk, and n ∈ Z. Then∫
γ
zn =

{
0, n ̸= −1,

2πi, n = −1.

In this case I have γ(t) = eit, t ∈ [0, 2π], hence∫
γ
zndz = i

∫ 2π

0
eit(n+1)dt,

and the result follows from
∫
eatdt = 1

ae
at for any complex a.

Here are a few technical points which will be important in the following. The proofs rely on the
properties of real integrals, which I assume to be known.

1. ∫
γ
f =

∫
−γ
f.

The proof follows from
∫ b
a = −

∫ a
b .

2. Let γ = γ1 ∪ γ2 and γ1 and γ2 are disjoint. Then∫
γ
f =

∫
γ1

f +

∫
γ2

f.

Clearly one can generalize to any finite number of γ’s. Proof follows from the definition and
properties of real integrals.
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3. Reparametrization. This is one of the most important properties which informally says that
the complex integral depends only on the image of γ and its direction, but not on a concrete
parametrization of this image. To be specific: Let γ̃ : [α̃, β̃] −→ C be another path, and assume
that γ̃ = γ ◦ ψ, where function ψ : [α̃, β̃] −→ [α, β], onto, and has a positive derivative. Then∫

γ̃
f =

∫
γ
f.

Proof. Due to Property 2 I can concentrate on an interval where both γ′ and γ̃′ exist. Then

γ̃′(t) = γ′(ψ(t))ψ′(t)

by the chain rule.∫
γ̃
f(z)dz =

∫ β̃

α̃
f(γ̃(t))γ̃′(t)dt =

=

∫ β̃

α̃
f(γ(ψ(t)))γ′(ψ(t))ψ′(t)dt = (changing the variables) =

=

∫ β

α
f(γ(s))γ(s)ds =

∫
γ
f(z)dz.

�

Property 3 is especially important because it allows to choose the simplest paramentrization of
our path for each smooth segment. Here is an example.

Example 9.3. Find ∫
γ
z2dz,

where γ = γ1 ∪ γ2, γ1 is the line segment of the real axis from −R to R and γ2 is the half circle in the
upper half plane connecting points R and −R. Due to property 2 I can separate this integrals into
two: along γ1 and γ2 correspondingly. I also have

γ1(t) = −R+ 2Rt, t ∈ [0, 1],

and
γ2(t) = Reit, t ∈ [0, π],

note that my t is not continuous along the whole γ because by Property 3 I can choose the parametriza-
tion that I like. Finally, ∫

γ
z2dz =

∫ 1

0
R2(2t− 1)22Rdt+

∫ π

0
R2e2itiReitdt =

=
2R3

2

(2t− 1)3

3

∣∣∣∣1
0

+
R3i

3
e3it

∣∣∣∣π
0

=

=
1

3
R3 +

1

3
R3 +

R3

3
(e3πi − 1) = 0.

The calculations in the last examples are nice to emphasize the importance of the properties of
complex integrals, but, strictly speaking, are not necessary. In the next subsection I will explain the
reasons for this.
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9.3 Antiderivative

Judging by its title the Fundamental theorem of calculus is the central theorem in Calc I. Here I will
show how to formulate a complex analogue of this theorem, but would like to remark from the very
beginning that this “fundamental theorem” is a particular case of a much more general statement
(Cauchy’s theorem) and hence plays only an axillary role.

I start with the usual definition that complex function F is called an antiderivative of f in domain
E if F ′(z) = f(z) for all z ∈ E. From our experience we have that, e.g., z2 is an antiderivative for
2z in all C, z−1 is an antiderivative of −1/z2 in C \ {0}, and Log z is an antiderivative of 1/z in E,
where E has no points on the negative real half-axis. Note that similar to the real case antiderivative
is not unique, but is determined (on a domain E) up to an additive complex constant. I have

Proposition 9.4. Let F be an antiderivative of f on domain E, and let γ ∈ E. Then∫
γ
f(z)dz = F (γ(β))− F (γ(α)).

Proof. I will assume that γ is smooth. The full version is obtained by invoking Property 2 from the
previous section. ∫

γ
f(z)dz =

∫ β

α
F ′(γ(t))γ′(t)dt = (s = γ(t)) =

=

∫ γ(β)

γ(α)
F ′(s)ds = F (γ(β))− F (γ(α))

as required. �

And here is our first glimpse of Cauchy’s theorem as an immediate corollary to the previous.

Corollary 9.5. Let γ be a closed path, γ ∈ E, and f has an antiderivative F in E. Then∮
γ
f(z)dz = 0.

(Here I use the notation
∮

to emphasize that the integral is taken along a closed path.)
To use this corollary one needs to be sure that an antiderivative exists, which is not always clear.

The contrapositive, however, gives a direct recipe to prove that there is no antiderivative in some
domain E. For instance we know (see the fundamental example above) that∫

∂B(0,1)

1

z
dz = 2πi,

which implies that 1
z has no antiderivative in any domain containing the unit circle.

Finally since z2 is entire, and clearly has antiderivative z3/3 in the whole C, then the calculations
in Example 9.3 were not necessary since we integrated along a closed path.
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9.4 One useful estimate

For real integrals we have (which is in a sense a generalized triangle inequality)∣∣∣∣∫ b

a
f(x)dx

∣∣∣∣ ≤ ∫ b

a
|f(x)|dx.

The proof follows from the inequalities f(x) ≤ |f(x)| and −f(x) ≤ |f(x)| and direct integration. One
cannot assume that the same inequality holds for complex integrals. Indeed, assume that something
similar holds ∣∣∣∣∣

∫
∂B(0,1)

1

z
dz

∣∣∣∣∣ ≤
∫
∂B(0,1)

1

|z|
dz =

∫ 2π

0
ieitdt = 0,

which does not make any sense since we already know that this integral is equal 2πi. Here is the
correct way to estimate complex integrals.

Proposition 9.6. Let E be a domain, γ ∈ E, and M = maxz∈γ |f(z)|. Then∣∣∣∣∫
γ
f(z)dz

∣∣∣∣ ≤M

∫ β

α
|γ′(t)|dt =M · length γ,

where I defined

length γ =

∫ β

α
|γ′(t)|dt.

Proof. The proof is not very illuminating and a little technical, but it uses one trick, which is very
useful to remember while working with complex numbers. So I provide the details. I need to estimate∣∣∣∫γ f ∣∣∣. I will use the fact that ∫

γ
f =

∣∣∣∣∫
γ
f

∣∣∣∣ eiθ,
where θ is the argument of

∫
γ f . Therefore,∣∣∣∣∫

γ
f

∣∣∣∣ = e−iθ

∫
γ
f.

Now, the expression on the left is real, hence the expression on the right must be real and hence
coincides with its real part:∣∣∣∣∫

γ
f

∣∣∣∣ = Re

∫
γ
e−iθf(z)dz =

∫ β

α
Re

[
f(γ(t))eiθγ′(t)

]
dt.

Now, the right hand side is real, and I can use the integral inequality for the real integrals∣∣∣∣∫
γ
f

∣∣∣∣ ≤ ∫ β

α

∣∣∣f(γ(t))eiθγ′(t)∣∣∣ dt = ∫ β

α
|f(γ(t))||γ′(t)|dt,

from where the required inequality follows. �

Example 9.7. Let γ be the semicircle in the upper half plane of radius R and f(z) = (z4 + 1)−1. I
have ∣∣∣∣∫

γ
f(z)dz

∣∣∣∣ ≤ ∫ π

0

∣∣∣∣ Rieit

R4e4it + 1

∣∣∣∣ dt ≤ R

|R4 − 1|
π,

where I also used the inverse triangle inequality |a− b| ≥ ||a| − |b||.
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