9 Complex integral

Here we finally get to the central point of our course — complex integral. Specifically, our task is
make sense of the following notation
/ f(z)dz.
gl

There are three parts of this formula: the integral itself, and what we actually understand by
writing the integral sign; the curve or path v; and finally the domain F, which should contain v and
on which f must be holomorphic (remember that the goal is to study holomorphic functions, not
arbitrary ones). There are quite a few subtle geometric and topological points related to v, E, and f,
but I will try to get to the final result (Cauchy’s theorem, see the next section) skipping most of these
technical points. Full treatment should be looked for in a graduate textbook.

9.1 Path

By a path v in complex analysis one usually calls a rectifiable curve. Loosely speaking, this is a
continuous curve that has a finite length (but what is length anyway?). We will be satisfied with a
somewhat much less strict definition of the path: Path « is a continuous piecewise smooth function.
This means that 1) v: [a, ] — C is continuous, i.e.,

V(1) = x(t) +iy(t),

and z and y are continuous real functions; moreover the derivative /(t) = 2/(t) 4+ iy/(t) exists at all
the points of [«, 5] except, possible, a finite number of points ¢y, ta, . .., t,, and if derivative exists then
it is a continuous function on its own.

Here are a few examples.

A path corresponding to the half circle through 1,i, —1 is given by (t) = ', t € [0, 7].

A path corresponding to the line segment connecting points xg + iy and x; + iy; is given by
v(t) = (xo + (21 — 20)t) +i(yo + (y1 — Yo)t), t € [0,1], etc. More examples will be given below.

Quite often it is important to distinguish between the path itself (function ¢ — ~(¢)) and its image
(the set of points {z € C: z = v(t), t € [a, ]}), I will not do it in these lectures and will be using the
same letter v for both the path and its image.

Note that the path has a direction, I will denote —~ the path that has the same image as v but
the opposite direction.

The path is called closed if v(a)) = v(B); simple if it has no self intersections (except for possibly
v(a) = v(B)); a simple closed path is often called a Jordan’s curve.

9.2 The integral

Now that we have some idea about paths I can define

Definition 9.1. 5
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where on the right is a pair of usual familiar real integrals
B B B
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Note that this definition of complex integral is perfectly fine even for the paths that are not differen-
tiable at every point, because the Riemann integral exists for piecewise continuous functions, and this
is what I required from 7/ to satisfy.

The definition may look a little arbitrary, and in this respect I would like to remark that f7 fis
nothing else as two real line integrals, which were studied in Calc III, and which have quite natural
geometric and physical interpretations. Indeed, assuming f = u + iv and z = = + iy,

[Yf(z)dz = /j(u + i) (2’ + iy')dt =
= /j(uaﬁ’ —vy')dt + i/ﬁ(vw’ +uy')dt =

«

:/udx—vdy+i/vdm+udy.
¥ gl

Here is our first (and arguably most important) example.

Example 9.2. Let v = 0B(0, 1), i.e., the boundary of the unit disk, and n € Z. Then

/z” _ 0, n#—1,
; omi, n=—1.

In this case I have y(t) = €, ¢ € [0, 27, hence

2
/z"dz :i/ et qe,
¥ 0

and the result follows from [ e*dt = %eat for any complex a.

Here are a few technical points which will be important in the following. The proofs rely on the
properties of real integrals, which I assume to be known.

[r=]5

2. Let v =1 U~y and 1 and 75 are disjoint. Then

/Yfz/%er/wf-

Clearly one can generalize to any finite number of +’s. Proof follows from the definition and
properties of real integrals.

1.

The proof follows from f; =—



3. Reparametrization. This is one of the most important properties which informally says that
the complex integral depends only on the image of v and its direction, but not on a concrete
parametrization of this image. To be speciﬁc Let 7: [a, [3] — C be another path, and assume
that 4 =« o ¢, where function ¢: [&, ﬂ a, (], onto, and has a positive derivative. Then

/f/

Proof. Due to Property 2 I can concentrate on an interval where both 7' and 4’ exist. Then

Y () =~ ()Y @)
by the chain rule.
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Property 3 is especially important because it allows to choose the simplest paramentrization of
our path for each smooth segment. Here is an example.

Example 9.3. Find
/szz,
v

where v = 1 Uy, 71 is the line segment of the real axis from —R to R and -y is the half circle in the
upper half plane connecting points R and —R. Due to property 2 I can separate this integrals into
two: along v; and o correspondingly. I also have

n(t)=—R+2Rt, teo1],

and '

2(t) = Re, t € 0,7],
note that my ¢ is not continuous along the whole v because by Property 3 I can choose the parametriza-
tion that I like. Finally,

/ 22dz = / R%(2 V22Rdt + / R2eMtRettdt =
o 0
2R3 (2t — 1)3 R3% ,|"
= —_— —¢e =
2 3 o 3 0
1 3 1 3 R3 3mi
= — —_ _— 1 — 1 = .
3R + 3R + 3 (e )=0

The calculations in the last examples are nice to emphasize the importance of the properties of
complex integrals, but, strictly speaking, are not necessary. In the next subsection I will explain the
reasons for this.



9.3 Antiderivative

Judging by its title the Fundamental theorem of calculus is the central theorem in Calc I. Here I will
show how to formulate a complex analogue of this theorem, but would like to remark from the very
beginning that this “fundamental theorem” is a particular case of a much more general statement
(Cauchy’s theorem) and hence plays only an axillary role.

I start with the usual definition that complex function F' is called an antiderivative of f in domain
E if F'(z) = f(2) for all z € E. From our experience we have that, e.g., 2% is an antiderivative for
2z in all C, 27! is an antiderivative of —1/22 in C\ {0}, and Log z is an antiderivative of 1/z in E,
where E has no points on the negative real half-axis. Note that similar to the real case antiderivative
is not unique, but is determined (on a domain E) up to an additive complex constant. I have

Proposition 9.4. Let F' be an antiderivative of f on domain E, and let v € E. Then

Proof. 1 will assume that v is smooth. The full version is obtained by invoking Property 2 from the
previous section.

B8
/ F(2)dz = / F/(3()7 (1)t = (s = A(8)) =
~v(B)
— / F/(s)ds = F(+(8)) — F(7(a))
v(a)
as required. |

And here is our first glimpse of Cauchy’s theorem as an immediate corollary to the previous.

Corollary 9.5. Let v be a closed path, v € E, and f has an antiderivative F' in E. Then

75 f(z)dz = 0.

(Here I use the notation ¢ to emphasize that the integral is taken along a closed path.)

To use this corollary one needs to be sure that an antiderivative exists, which is not always clear.
The contrapositive, however, gives a direct recipe to prove that there is no antiderivative in some
domain E. For instance we know (see the fundamental example above) that

1
/ —dz = 2m7i,
aB(0,1) ?

which implies that % has no antiderivative in any domain containing the unit circle.
Finally since z? is entire, and clearly has antiderivative z3/3 in the whole C, then the calculations
in Example 9.3 were not necessary since we integrated along a closed path.



9.4 One useful estimate

For real integrals we have (which is in a sense a generalized triangle inequality)

/f ) /|f )|da.

The proof follows from the inequalities f(z) < |f(z)| and —f(z) < |f(z)| and direct integration. One
cannot assume that the same inequality holds for complex integrals. Indeed, assume that something

similar holds
1 2
/ —dz| < / —dz = / ie''dt = 0,
8B(0,1) ? aB(0,1) |2 0

which does not make any sense since we already know that this integral is equal 27i. Here is the
correct way to estimate complex integrals.

Proposition 9.6. Let E be a domain, v € E, and M = max,c |f(z)|. Then

Lf(z)dz

B
< M/ |v'(t)|dt = M - lengthy,
«

where I defined
B
length~y = / |y (t)|dt.

Proof. The proof is not very illuminating and a little technical, but it uses one trick, which is very
useful to remember while working with complex numbers. So I provide the details. I need to estimate

‘j:y ] ‘ I will use the fact that
/ /
~ ~

where 6 is the argument of fA/ f- Therefore,
= 1? / f
gl

/7f

Now, the expression on the left is real, hence the expression on the right must be real and hence
coincides with its real part:

[ 1] =re [ s = [ e [romero] a

Now, the right hand side is real, and I can use the integral inequality for the real integrals

[ 1] [ romeola= [ oo

from where the required inequality follows. |
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Example 9.7. Let v be the semicircle in the upper half plane of radius R and f(z) = (z* +1)71. 1
Rielt R

have i
dz| < -
/Wf(z) ‘ —/0 Riedit + 1 RE— 1™

where I also used the inverse triangle inequality |a — b| > ||a] — |b]|.
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